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Abstract—Robust model predictive control (MPC) is a well-
known control technique for model-based control with constraints
and uncertainties. In classic robust tube-based MPC approaches,
an open-loop control sequence is computed via periodically solv-
ing an online nominal MPC problem, which requires prior
model information and frequent access to onboard computa-
tional resources. In this article, we propose an efficient robust
MPC solution based on receding horizon reinforcement learn-
ing, called r-LPC, for unknown nonlinear systems with state
constraints and disturbances. The proposed r-LPC utilizes a
Koopman operator-based prediction model obtained offline from
precollected input–output datasets. Unlike classic tube-based
MPC, in each prediction time interval of r-LPC, we use an
actor–critic structure to learn a near-optimal feedback control
policy rather than a control sequence. The resulting closed-loop
control policy can be learned offline and deployed online or
learned online in an asynchronous way. In the latter case, online
learning can be activated whenever necessary; for instance, the
safety constraint is violated with the deployed policy. The closed-
loop recursive feasibility, robustness, and asymptotic stability are
proven under function approximation errors of the actor–critic
networks. Simulation and experimental results on two nonlinear
systems with unknown dynamics and disturbances have demon-
strated that our approach has better or comparable performance
when compared with tube-based MPC and linear quadratic regu-
lator, and outperforms a recently developed actor–critic learning
approach.
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I. INTRODUCTION

MODEL predictive control (MPC) has received consid-
erable attention due to its theoretical developments

and wide-spreading applications in industrial plants, robots,
etc., (see [1]–[3]). Most of the existing MPC approaches are
model based, whose implementations rely on the knowledge of
dynamics that are typically identified a priori. For control of
systems with modeling errors caused by identification and pos-
sible exogenous disturbances, robust MPC such as min–max
MPC in [4] and [5] or tube-based MPC in [6], [7], and the ref-
erences therein can be used to ensure robustness and constraint
satisfaction. In classic tube-based MPC (also termed as tube
MPC) for linear systems, the resulting control is composed of
a nominal control action computed by a standard MPC and an
offline linear feedback control policy. However, in tube MPC
for nonlinear systems (cf. [7]), two nonlinear optimization
problems are typically solved, likely with an intensive com-
putational load. Resorting to the recent developments in the
machine learning community, in [8]–[10] and the references
therein, deep neural networks have been used to approximate
an explicit control policy of robust MPC. The control policy
is learned offline and deployed online. As a consequence, the
computational load can be dramatically reduced; however, new
issues, such as insufficient generalization and transfer abilities,
might be inherited through deep neural networks.

As a class of methods for solving optimal control problems,
reinforcement learning (RL) and adaptive dynamic program-
ming (ADP) have also received significant attention in the past
decades (see [11]–[17] and the references therein). Among
the classic RL and ADP approaches, infinite-horizon optimal
control problems with continuous state space can be solved
in a forward-in-time way via actor–critic learning. Along
this direction, various notable algorithms have been studied
in [18]–[20] for discrete-time nonlinear systems with prior
dynamical knowledge, in [21] and [22] for unknown discrete-
time nonlinear dynamics, and in [23] for unknown continuous-
time nonlinear dynamics. The extensions to learning-based
event-triggered control approaches can be found, for instance,
in [24] for discrete-time nonlinear systems and in [25] for con-
trol of autonomous vehicles under denial-of-service attacks. To
solve finite-horizon optimal control problems, a finite-horizon
ADP solution was proposed in [26] for nonlinear discrete-
time systems with input constraints, and the stability is
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guaranteed under an open-loop stability assumption. In [27], a
finite-horizon near-optimal control algorithm was presented for
discrete-time nonlinear affine systems with unknown dynamics
by using an identifier-actor–critic structure.

Due to the common roots in optimal control, the rela-
tions between MPC and RL and their comparisons have been
studied in [28] and [29], and some initial research works
on the integration of MPC and RL have emerged recently,
which can be called learning-based predictive control (LPC).
In [30] and [31], safe robust MPC algorithms were proposed
for learning-based control with an event-triggered mechanism.
In [3], a safe learning controller was presented based on set-
membership recursion. From a different perspective that this
article focuses on, RL with an actor–critic structure has been
used to solve LPC problems (see, e.g., [32] and [33]). The
optimization problem in each prediction interval is solved in a
forward-in-time manner via actor–critic learning. In specific,
a batch-mode RL-based predictive controller for discrete-time
systems with stochastic noises and control constraints was
proposed in [32]. In [33], an ADP-based functional MPC
was proposed for nonlinear discrete-time systems, where the
control saturation is used to deal with the control constraint.
The uniform ultimate boundedness of the closed-loop system
is proven under certain conditions, relying on a stability
assumption similar to [26].

In the framework of LPC, the closed-loop robustness for
unstable (stabilizable) perturbed systems under actor–critic
approximation errors is a critical issue, which has not been
addressed in [26], [27], [32], and [33]. Also, the trial-and-
error learning manner of RL could lead to a state constraint
violation, which is expensive for safety-critical systems. To
the best of our knowledge, no prior LPC with actor–critic
network has addressed this point. These issues motivated
our work.

In this article, we propose a robust learning-based predictive
controller using an actor–critic structure, i.e., r-LPC, for a
class of discrete-time nonlinear systems with unknown dynam-
ics, state constraints, and disturbances. This work can be
regarded as a new development of previous robust tube-based
MPC by using an RL-based strategy to learn closed-loop
control policies in an efficient way. The main features of
the proposed r-LPC are summarized as follows. First, the
proposed approach can learn an explicit closed-loop control
policy on the state variable. As a consequence, the con-
trol policy can be learned offline and deployed online, or
learned online in an asynchronous way whenever necessary,
for instance, the safety constraint is violated, such that the
online computational load can be reduced. The closed-loop
recursive feasibility, robustness, and asymptotic stability of r-
LPC are proven under modeling and function approximation
errors. Simulation and experimental results on two nonlinear
plants with unknown dynamics and disturbances have demon-
strated that our approach can obtain better or comparable
performance when compared with the previous tube-based
MPC [34] and linear quadratic regulator (LQR). In addi-
tion, the proposed r-LPC approach also outperforms a recently
developed actor–critic learning approach [35] in the adopted
tests.

The remainder of this article is organized as follows.
Section II introduces the control problem and preliminaries.
In Section III, the theoretical property of r-LPC is given.
Section IV shows the simulation and experimental results,
while some conclusions are drawn in Section V. Some proofs
and offline computational details are given in the Appendix.

Notation: We denote N
l2
l1

as the set of integers l1, l1 +
1, . . . , l2. Given the variable r, we use rk:k+N−1 to denote
the sequence r(k) . . . r(k + N − 1), where k,N ∈ N

∞
0 . For

a vector x ∈ R
n, we denote ‖x‖2Q as x�Qx and ‖x‖ as the

Euclidean norm (as the Frobenius norm if x is a matrix). For
a matrix A ∈ R

m×n, we denote σmin(A) as the minimal sin-
gular value. Given two sets Z and V , their Minkowski sum
is Z ⊕ V = {z + v|z ∈ Z, v ∈ V}, and we denote Int(Z)
as the interior of Z . For variables zi ∈ R

qi and i ∈ N
M
1 ,

we define (z1, z2, . . . , zM) = [ z�1 z�2 · · · z�M ]� ∈ R
q, where

q =∑M
i=1 qi.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Control Problem and Preliminary Solution

Consider a class of discrete-time nonlinear systems with
additive disturbances described by

x(k + 1) = f (x(k), u(k))+ w(k) (1)

where x ∈ X ⊆ R
n and u ∈ U ⊆ R

m are the state and control
variables, w ∈ W ⊂ R

n is a bounded additive disturbance,
X , U , and W are convex sets containing the origin in their
interiors, and mapping f can be unknown. It is assumed that
f is C1 and f (0, 0) = 0, f < +∞ in the domain X × U , the
state x is measurable.

Starting from any x(0) ∈ X , the control goal of interest is to
minimize a cost function V∞(x(0)) =∑+∞

k=0 ‖x(k)‖2Q+‖u(k)‖2R
subject to constraints x(k) ∈ X , u(k) ∈ U , where Q = Q� ∈
R

n×n and R = R� ∈ R
m×m, Q,R 
 0.

In the following, we review a recently developed tube-based
Koopman MPC in [34] for solving the considered problem.

We first introduce the Koopman model based on the
Koopman operator (cf. [34], [36], [37]). To this end, let
φ(x) : X → C be an observable of state x and F be a given
space of observables. The Koopman operator describes dynam-
ics x(k+ 1) = f (x(k)) using a linear dynamic evolution of the
observable (cf. [34], [36], [37]), i.e.,

φ(x(k)) = Kφ(x(k − 1)) = Kkφ(x(0)) (2)

for every φ(x) ∈ F .
To apply the Koopman operator for systems with controls,

i.e., (1), we define an extended state space X × �(U), where
�(U) is the space of {uw(i)}∞i=0 with uw(i) = (u(i),w(i)) ∈
U ×W . Letting fW(x, uw) := f (x, u)+ w and uw(i) be the ith
element of uw := {uw(i)}∞i=0, one can write the evolution of
the extended state s = (x,uw) as

s(k + 1) = F(s(k)) (3)

where F(s) = (fW(x,uw(0)), Γ uw), Γ is a left shift opera-
tor such that uw(i + 1) = Γ uw(i). Hence, one can apply the
Koopman operator in (2) to (3), (see also [34], [36], [37]), i.e.,

φ(s(k)) = Kφ(s(k − 1)) = Kkφ(s(0)) (4)
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for every φ(s) : X × �(U ×W)→ C belonging in Fe, which
is a given space of φ(s).

Note that in (4), the Koopman operator K is of infinite
dimension. For practical concerns of controller design, a finite-
dimensional approximation of K is required. Especially, we
choose a collection of observables as �(s) = (�(x), uw)

where �(x) = (ψ1(x), . . ., ψn̄(x)), n̄ > n, and ψi, i ∈ N
n̄
1

are constructed as basis functions. Let the approximation of
Koopman operator be KN̄ ∈ R

N̄×N̄ associated with �(s),
where N̄ = n̄+ m+ n. From (4), one writes

�(s(k + 1)) = KN̄�(s(k))+ ε(k) (5)

where ε is the error due to the approximation of K.
As shown in [34], there exists an inverse mapping, denoted

as �−1, such that �−1(�(x)) = x, i.e., the evolution of x can
be recovered with (2) through �−1. Let C�(x), C ∈ R

n×n̄,
be an approximation of �−1, such that x = �−1(�(x)) =
C�(x)+ v (cf. [34]), where the approximation error v ∈ V , V
is a compact set containing the origin. As the mapping from
�(s) to �(x) is of interest, we denote the first n̄ rows of KN̄
as [KN̄]1:n̄ = [A B D], A ∈ R

n̄×n̄, B ∈ R
n̄×m, and D ∈ R

n̄×n.
Let z = �(x), in view of (5), then one can write an equivalent
form of (1) considering the modeling errors, i.e.,

{
z(k + 1) = Az(k)+ Bu(k)+ d(k), z(k) = �(x(k))
x(k) = Cz(k)+ v(k)

(6)

where d = Dw+ w̄ ∈ D is the exogenous input, w̄ = ε[1:n̄], D
is a compact set containing the origin. The model parameters
A, B, C, and D and sets D and V are computed in a data-driven
way, which are deferred in Appendix A-E.

The following assumptions about model (6) hold.
(A1) The matrix A is stabilizable and full rank.
(A2) The lifted function �(x) satisfies �(0) = 0.
(A3) �(x) is Lipschitz continuous for all x ∈ X .

To control (6), i.e., (1), a robust tube MPC can be used. The
overall control law is given as

u = û∗ + Kez (7)

where ez = z− ẑ, matrix K ∈ R
m×n̄ is such that F = A+BK is

Schur stable, and û∗ is computed by a nominal MPC [deferred
in (10)] using the following predictor:

{
ẑ(k + 1) = Aẑ(k)+ Bû(k)
x̂(k) = Cẑ(k).

(8)

By subtracting (6) with (7) and (8), the error ez evolves in the
following unforced system:

{
ez(k + 1) = Fez(k)+ d(k)
ex(k) = Cez(k)+ v(k)

(9)

where ex = x − x̂. Let the robust invariant set of ez be Oz,
such that FOz ⊕D ⊆ Oz. The corresponding robust “output”
invariant set of ex is defined as Ox = COz ⊕ V .

Inline with [34], at any time k, a nominal MPC is solved
online to compute û∗ in (7), i.e.,

min
ûk:k+N−1

V =
N−1∑

i=0

(∥
∥ẑ(k + i)

∥
∥2

Q̄ +
∥
∥û(k + i)

∥
∥2

R

)

+ Vf
(
ẑ(k + N)

)
(10)

where Q̄ = Q̄� ∈ R
n̄×n̄, Q̄ 
 0, Vf (ẑ) = ‖ẑ‖2P, P = P� ∈

R
n̄×n̄, P 
 0 is the solution to

F�PF − P = −Q̄− K�RK. (11)

Problem (10) is performed subject to constraints (8), ẑ(k +
i) ∈ Z , û(k + i) ∈ Û , i ∈ N

n−1
0 , and ẑ(k + N) ∈ Zf , where

Z = {ẑ|Cẑ⊕Ox ∈ X }, Û⊕KOz = U ,Zf is a positive invariant
set of (8) under constraints ẑ ∈ Z and û ∈ Û . Like [34], it is
assumed that the sets Z and Û are nonempty and contain the
origin in the interior; otherwise, problem (10) is infeasible.

Remark 1: We now summarize the roles of the two con-
trol terms in the control law (7) as follows. The first term is
computed by solving a nominal MPC [see (10)] to generate
the center trajectory of the tube, where tightened constraints
ẑ ∈ Z and û ∈ Û are enforced for real constraint fulfillment.
The auxiliary feedback term Kez is introduced to steer the real
state z to ẑ.

Let û∗k+N−1|k be the optimal solution to (10) at time k, then
the control

u(k) = û∗(k|k)+ Kez(k) (12)

is applied at time k, and problem (10) is repeatedly solved
according to the receding horizon principle.

B. Definitions About Barrier Functions and Feasible Control

We also introduce a type of barrier functions about con-
straints to be used in the actor–critic learning algorithm for
state constraint satisfaction.

Definition 1 (Barrier Function): For any convex set Z =
{z ∈ R

n|gi(z) ≤ 1 ∀i ∈ N
p
1}, a barrier function is defined as

B̄(z) =
{−∑p

i=1 log(1− gi(z)) z ∈ Int(Z)
+∞ otherwise.

We introduce the relaxed barrier function in the following
lemma according to [38] and [39].

Lemma 1 (Relaxed Barrier Function): Let gi(z) = a�i z
where ai ∈ R

n̄, and define a relaxed barrier function as

B(z) =
{ B̄(z) σ̄ ≥ κ
γb(z, σ̄ ) σ̄ < κ

(13)

where κ > 0 is a relaxing factor, σ̄ = mini∈Np
i=1

1 − a�i z,
the function γb(z, σ̄ ):(−∞, κ) is strictly monotone and dif-
ferentiable, and �2γb(z, σ̄ ) ≤ �2B(z)|σ̄=κ , then there exists
a positive-definite matrix Hz ≥ (1/2)�2B(z)|σ̄=κ , such that
B(z) ≤ z�Hzz ≤ Bmax(z), where Bmax(z) = maxz∈Z z�Hzz.

Proof: In view of Definition 1, for σ̄ ≥ κ , one has
�2γb(z, σ̄ ) ≤ �2B(z) ≤ 2Hz. As B(0) = 0, it holds that
B(z) ≤ z�Hzz is verified.

Definition 2 (Feasible Control Policy): The control policy
ûk:k+N−1 is feasible in the prediction interval [k, k+N− 1] if
û(τ |k) ∈ Û , ẑ(τ |k) ∈ Z , and ẑ(k + N|k) ∈ Zf ∀τ ∈ N

N−1
0 .

III. DESIGN OF ROBUST MPC BASED ON RL

In this section, we first give the control structure of the
proposed robust MPC based on RL, i.e., r-LPC. Then, we
present by order the finite-horizon RL algorithm and the
actor–critic implementation, for learning an explicit nominal
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Fig. 1. Control structure of the proposed r-LPC algorithm.

Fig. 2. Difference between r-LPC and classic tube MPC. In classic robust
tube MPC (on the left-hand side), the controller is composed of a state feed-
back term and an implicit control policy û∗ via numerically solving an online
nominal MPC. Whilst, in the proposed r-LPC approach, the term û(ẑ) is an
explicit policy on the state, learned via an actor-critic network.

control policy of r-LPC in each prediction interval. Finally,
the pseudocode of r-LPC is given at the end of this section.

A. Control Structure of r-LPC

In the proposed r-LPC approach, the control policy at any
time k is of type

u(z, ẑ, k) = û(ẑ(k))+ Kez(k) (14)

where û(ẑ) is an explicit network-based control policy on
the state ẑ learned by a receding-horizon RL algorithm using
an actor–critic structure, while the second term is an offline
nonlinear state-feedback policy (see Fig. 1).

Peculiarly, in each prediction interval [k, k + N − 1] of r-
LPC, the actor and critic adopted in the finite-horizon RL
(deferred in Section III-C), are designed with neural networks
for approximating the near-optimal control policy and value
function. The learned actor network results in a nominal con-
trol policy, i.e., û(ẑ(k + i|k)), i = 0, . . . ,N − 1. Then, the
resulting control to be applied at time k is

u
(
z, ẑ, k

) = û
(
ẑ(k|k))+ Kez(k). (15)

At the next time k+ 1, the control policy û(ẑ) can be directly
applied or improved via repeatedly solving the finite-horizon
learning problem. Also, the difference of the proposed r-LPC
with classic robust tube-based MPC is highlighted in Fig. 2.

In the following two sections, we focus on presenting
the finite-horizon constrained RL with an actor–critic struc-
ture for learning the nominal control policy, i.e., û(ẑ) in the

prediction interval. First, the constrained Hamilton–Jacobi–
Bellman (HJB) equation is formulated and a finite-horizon
iterative RL is given to solve the HJB equation. Then, the
actor–critic structure is used to implement the finite-horizon
RL, which results in a network-based nominal control policy.

B. Constrained Finite-Horizon RL in the Prediction Interval

Note that it is nontrivial to deal with state constraints in the
learning process. Hence, we first transform the hard state con-
straint ẑ ∈ Z and control constraint û ∈ Û into soft ones with
barrier functions defined in Section II-B. Specifically, in line
with [38] and [40], the value function in (10) is reconstructed
using barrier functions on the states and controls, i.e.,

V̄
(
ẑ(k)

) =
N−1∑

i=0

r
(
ẑ(k + i), û(k + i)

)+ V̄f
(
ẑ(k + N)

)
(16)

where r(ẑ(τ ), û(τ )) = ‖ẑ(τ )‖2
Q̄
+ ‖û(τ )‖2R + μB(ẑ(τ )) +

μB(û(τ )), V̄f (ẑ(k + N)) = Vf (ẑ(k + N)) + μBf (ẑ(k + N)),
μ > 0 is a weighting scalar that determines the influence of
barrier function values on V̄(ẑ(k)), and barrier functions B(ẑ),
B(û), and Bf (ẑ) are designed according to Definition 1 and
Lemma 1. In the case that Zf is of an ellipsoidal form, i.e.,
Zf = {z ∈ R

n̄|g(z) ≤ 1} and g(z) is a quadratic function, we
set Bf (ẑ) = B̄(ẑ).

In view of (16), the Lyapunov equation in (11) is modified as

F�PF − P = −Q̄− K�RK − μH (17)

where H = Hẑ+K�HûK, Hẑ, and Hû are computed according
to Lemma 1 for constraints Z and Û , respectively.

With the reconstructed barrier function-based cost func-
tion (16), the original constrained optimization problem (10)
is transformed as an equality constrained one, which can be
solved via the RL framework. To this end, at any time k, letting
the remaining cost function at the prediction time τ ∈ [k, k+
N−1] be V̄(ẑ(τ )) =∑N−τ−1

i=0 r(ẑ(τ+i), û(τ+i))+V̄f (ẑ(k+N)),
one can write

V̄
(
ẑ(τ )

) = r
(
ẑ(τ ), û(τ )

)+ V̄
(
ẑ(τ + 1)

)
(18)

where V̄(ẑ(k + N)) = V̄f (ẑ(k + N)).
Let V̄∗(ẑ(τ )) be the optimal value function at τ ∈ [k, k +

N − 1]. Then, the discrete-time HJB equation is given as

V̄∗
(
ẑ(τ )

) = min
û(τ )

r
(
ẑ(τ ), û(τ )

)+ V̄∗
(
ẑ(τ + 1)

)
(19)

leading to the optimal control policy

û∗(ẑ(τ )) = argmin
û(τ )

r
(
ẑ(τ ), û(τ )

)+ V̄∗
(
ẑ(τ + 1)

)
. (20)

Let λ(ẑ(τ )) = ∂V̄(ẑ(τ ))/∂ ẑ(τ ) be the costate and denote
λf (ẑ(k+N)) = λ(ẑ(k+N)) as the terminal costate. Substituting
û with û∗ into (19) and in view of the optimality condition
∂V̄∗(ẑ(τ ))/∂ û∗(ẑ(τ )) = 0, one has

μ
∂B(

û∗
(
ẑ(τ )

))

∂ û∗
(
ẑ(τ )

) + 2Rû∗
(
ẑ(τ )

)+ B�λ∗
(
ẑ(τ + 1)

) = 0. (21)
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From (19), one has

λ∗
(
ẑ(τ )

) = μ∂B
(
ẑ(τ )

)

∂ ẑ(τ )
+ 2Q̄ẑ(τ )+ A�λ∗

(
ẑ(τ + 1)

)
. (22)

The computation of û∗ with (19) and (20) results in a non-
linear problem since B(·) is nonlinear. To solve this problem,
the following finite-horizon iterative RL (i.e., value iteration)
is introduced. Given an initial choice λ0(ẑ(τ )) = 0, the
following two main steps are repetitively performed for all
τ = k, . . . , k + N − 1.

1) Policy Improvement: Provided λi(ẑ(τ + 1))

ûi+1(ẑ(τ )
) = argû(τ )

{

μ
∂B(

û(τ )
)

∂ û(τ )
+ 2Rû(τ )

+ B�λi(ẑ(τ + 1)
) = 0

}

. (23)

2) Value Function Update: Given ûi(ẑ(τ ))

λi+1(ẑ(τ )
) = μ∂B

(
ẑ(τ )

)

∂ ẑ(τ )
+ 2Q̄ẑ(τ )+ A�λi(ẑ(τ + 1)

)
.

(24)

Remark 2: The convergence proof of ûi(τ ) and λi(τ ) ∀τ ∈
[k, k + N − 1] to the optimal values under value iteration
steps (23) and (24) can be easily verified as i → +∞,
following the results in [32] and [41].

C. Learning Nominal Control Policy With Actor-Critic
Structure

In the prediction time τ ∈ [k, k+N−1], instead of directly
solving steps (23) and (24), a regularized actor–critic structure
is used where the critic network is to approximate the optimal
costate λ∗(ẑ(τ )) and the actor network is in charge of learn-
ing the optimal control policy û∗(ẑ(τ )). The resulting nominal
control policy is nonlinear, network based, and explicit, which
is different from that in classic tube MPC.

We first design the critic network. To this end, let λ∗(ẑ(τ ))
be represented as

λ∗(ẑ(τ )) = W�c hc(ẑ(τ ), τ )+ ε̄c(τ )

where Wc ∈ R
Nc×n̄ is the weighting matrix, hc ∈ R

Nc is a
vector of basis functions, and ε̄c(τ ) is the network residual.
Let the adopted critic network be defined as

λ̂(ẑ(τ )) = Ŵ�c hc(ẑ(τ ), τ ) (25)

for all τ ∈ [k, k + N], where λ̂(ẑ(k + N)) is the approxi-
mated terminal costate, i.e., λ̂(ẑ(k + N)) = λ̂f (ẑ(k + N)), Ŵc

is the approximation of Wc via minimizing the distance of the
optimal costate λ∗ and λ̂. Note however λ∗ is not available,
in line with [41] and (24), we define a target to be steered by
λ̂, i.e.,

λd(ẑ(τ ))

=
{
μ
∂B(ẑ(τ ))
∂ ẑ(τ ) + 2Q̄ẑ(τ )+ A�λ̂(ẑ(τ + 1)), τ ∈ [k, k + N)

μ
∂Bf (ẑ(τ ))
∂ ẑ(τ ) + 2Pẑ(τ ) := λd,f (ẑ(τ )), τ = k + N

(26)

where ẑ(k + N) can be randomly chosen from set Zf .

Remark 3: In the learning process, with the goal of steering
λd, λ̂ is recursively updated along with Ŵc based on the gra-
dient descend mechanism, which however might lead to the
state constraint nonsatisfaction since Ŵc is related to λ̂ (rather
than ẑ). To improve the learning efficiency, one can instead
enforce the restriction on λ̂. To proceed, let at time τ = k+ j,
Z̄ j be the feasible set of problem (10), which can be com-
puted according to [42] since Assumption (A1) holds. With
Z̄ j, one can compute an estimate of the set where λ̂(τ ) lies
in, i.e., �j = 2Q̄Z̄ j + A��j+1, starting from �N = 2P�N ,
since ∂B(ẑ)/∂ ẑ is close to 0 in view of (26).

Once �j ∀j ∈ N
N
1 are available, letting εc(τ ) = λd(ẑ(τ ))−

λ̂(ẑ(τ )) ∀τ ∈ [k, k+N−1] and εc,N = λd(ẑ(k+N))− λ̂(ẑ(k+
N)), it is possible to define a regularized optimization cost of
the critic network as

δc(τ ) =
∥
∥
(
εc(τ ), εc,N

)∥
∥2 + μ̄

(
B

(
λ̂
(
ẑ(τ )

))+ Bf

(
λ̂
(
ẑ(k + N)

)))

(27)

where B(·) and Bf (·) are regularization terms on Ŵc, defined
as barrier functions of constraints λ̂(ẑ(k+ j)) ∈ �j and λ̂(ẑ(k+
N)) ∈ �N . At any time instant τ , the weight Ŵc is updated
via minimizing (27) according to the following rule:

Ŵc(τ + 1) = Ŵc(τ )− γc
∂δc(τ )

∂Ŵc(τ )
(28)

where γc is the learning rate. Note that the term
∂δc(τ )/∂Ŵc(τ ) = ∂δc(τ )/∂λ̂(τ ) · ∂λ̂(τ )/∂Ŵc(τ ) can be com-
puted according to the chain rule since εc(τ ) and εc,N are
related to λ̂, and λ̂ is a function on Ŵc [see (25)]. Likewise,
û∗(ẑ(τ )) can be represented using a network

û∗
(
ẑ(τ )

) = W�a ha
(
ẑ(τ ), τ

)+ ε̄a(τ )

where Wa ∈ R
Nu×m is the weighting matrix, ha ∈ R

Nu is a
vector of basis functions, and ε̄a(τ ) is the network residual. To
define the actor network, in view of (21), we define a desired
control action ûd(ẑ(τ )), τ ∈ [k, k + N − 1] satisfying

G
(
ûd

(
ẑ(τ )

))
:= μ∂B

(
ûd

(
ẑ(τ )

))

∂ ûd
(
ẑ(τ )

) + 2Rûd
(
ẑ(τ )

)

= −B�λ̂
(
ẑ(τ + 1)

)
. (29)

The approximation of ûd(ẑ(τ )) is then defined as

û(ẑ(τ )) = Ŵ�a ha(ẑ(τ ), τ ), τ ∈ [k, k + N − 1] (30)

where Ŵa is an approximation of Wa.
Note that the left-hand side of (29) is composed of a

linear mapping and a nonlinear function on ûd. Letting
εa(τ ) = G(ûd(ẑ(τ ))) − G(û(ẑ(τ ))), ‖εa(τ )‖2 is to be mini-
mized in the learning process, which is equivalent to driving
μ∂B(û(ẑ(τ )))/∂ û(ẑ(τ )) + 2Rû(ẑ(τ )) + B�λ̂(ẑ(τ + 1)) → 0
[see (21)] in the Euclidean norm sense. To also enforce a reg-
ularization on û, we choose to penalize εa via a regularized
loss function as follows:

δa(τ ) = ‖εa(τ )‖2 + μ̄B
(
û
(
ẑ(τ )

))
(31)

where the second term imposes a regularization on Ŵa with
barrier functions. At any time instant τ ∈ [k, k + N − 1], Ŵa
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Algorithm 1 Pseudocode of r-LPC
Off-line designs:

1: choose �(x) such that Assumptions (A2) and (A3) are
fulfilled;

2: calculate A, B, C, and D with (64) (see Appendix A-E),
and check that Assumption (A1) is satisfied;

3: compute D and V according to [34];
4: calculate P and K with (17) and compute Oz, Ox with K;
5: compute Z , Û , and Zf with K.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Online procedures:
Input: Set the iteration threshold ī, initialize γa, γc, select

Ŵa(τ ) and Ŵc(τ ) such that δa < Bmax(û), and δc <

Bmax(λ̂), i = 0.
1: At any time steps k = 1, 2, · · · do
2: . . . . .%%learning process in the prediction interval . . . . .
3: repeat %%iteration loop in the prediction interval
4: for τ = k, · · · , k + N − 1 do %%finite-horizon

forward-in-time learning
5: compute û(ẑ(τ )), ẑ(τ + 1) with (30), (8);
6: compute λ̂(ẑ(τ + 1)), λd(ẑ(τ )) with (25), (26)
7: compute G(ûd(ẑ(τ ))) with (29);
8: generate λ̂(ẑ(k+N)), λd(ẑ(k+N)) with (25), (26)

using randomly selected terminal state ẑ(k + N) ∈ Zf ;
9: compute εc(τ ), εc,N and update Ŵc(τ + 1)

with (27), (28);
10: compute εa(τ ) and update Ŵa(τ + 1) with (31),

(32);
11: if ẑ(τ ) /∈ Z ∨ û(τ ) /∈ Û ∨ ẑ(k + N) /∈ Zf then
12: Repeat steps 3 to 16 using re-initialized

weight (38) and break;
13: end if
14: end for
15: i← i+ 1
16: until i = ī
17: . . . . . . %%apply the learned control to the system . . . . . .
18: if V̄(k|k) ≤ V̄(k|k − 1) then
19: generate û(ẑ(k|k)) with (30);
20: else
21: compute û(ẑ(k|k)) with (36);
22: end if
23: apply u(z, ẑ, k) = û(ẑ(k|k))+ Kez(k) to system (1)
24: update ẑ(k + 1), z(k + 1), x̂(k + 1), and x(k + 1);
25: k← k + 1;

is updated via minimizing δa(τ ) under the following rule:

Ŵa(τ + 1) = Ŵa(τ )− γa
∂δa(τ )

∂Ŵa(τ )
(32)

where γa is the learning rate. Likewise, the term
∂δa(τ )/∂Ŵa(τ ) = ∂δa(τ )/∂ û(τ ) · ∂ û(τ )/∂Ŵa(τ ) can be com-
puted according to the chain rule since εa is related to û and
û is a function on Ŵa [see (30)].

In summary, the pseudocode of the proposed r-LPC
approach is given in Algorithm 1.

IV. MAIN THEORETICAL RESULTS

In this section, we first prove the convergence of the
barrier-function regularized actor–critic learning algorithm
under (28) and (32) in each prediction interval, which has not
been proven by existing works, e.g., [26], [27], [32], and [33].
Then, we give a necessary condition to guarantee the recursive
feasibility and robustness of r-LPC, which is the main focus of
our work. Moreover, we show that the closed-loop asymptotic
stability can be ensured under no external disturbance.

We first introduce the following assumptions.
(A4) ‖W�‖ ≤ W�,m, ‖h�‖ ≤ h�,m, ‖ε̄�‖ ≤ ε̄�,m, where � =

a, c in turns.
Theorem 1 (Convergence of Actor–Critic): Under

Assumption (A4) and the learning rules (28), (32), if
learning rates γa and γc are such that Ḡc1, Ḡa1 > 0 (whose
definitions are deferred in Appendix A-A), then there exist
ηc, ηa ≥ 0 such that

∥
∥
∥λ̂

(
ẑ(τ + 1)

)− λ∗(ẑ(τ + 1)
)∥∥
∥ ≤ ηc

∥
∥û

(
ẑ(τ )

)− û∗
(
ẑ(τ )

)∥
∥ ≤ ηa. (33)

τ ∈ [k, k + N − 1], as N → +∞. Also, if ε̄a, ε̄c, μ̄→ 0, and
A is Schur stable, then

Ŵc(τ )→ Wc, Ŵa(τ )→ Wa (34)

and

λ̂
(
ẑ(τ + 1)

)→ λ∗
(
ẑ(τ + 1)

)

û
(
ẑ(τ )

)→ û∗
(
ẑ(τ )

)
. (35)

τ ∈ [k, k + N − 1], as N →+∞.
Proof: Refer to Appendix A-A.
Remark 4: Theorem 1 implies that a sufficient large choice

of prediction horizon N is required to guarantee (33). To
achieve this, an outer iterative loop with a length of ī (see
Algorithm 1) can be adopted since the weighting matrices Ŵc

and Ŵa are time independent. This allows using a smaller
choice of N via increasing ī, such that īN is sufficiently large.

To state the following theorem in a compact form, letting
û(ẑ(τ |k)) be a control policy at any time k, we define a backup
policy at time k + 1 as:

ûs(ẑ(k + 1)
) = û

(
ẑ(k + 1|k)), . . . , û

(
ẑ(k + N − 1|k))

Kẑ(k + N|k). (36)

Also, we let ha = [ha(ẑs(k+1)), . . . , ha(ẑs(k+N))], where ẑs

are computed with control policy ûs.
Theorem 2 (Recursive Feasibility): Under Assumptions

(A1)–(A4), if the learned control policy û(ẑ(τ |k)) is feasible
(see Definition 2) at time k, then ûs

(ẑ(k+1)) is feasible at time
k + 1. Also, if ha satisfies the persistent excitation condition,
i.e.,

ρ1I ≤ hah�a ≤ ρ2I (37)

where ρ1, ρ2 > 0, then the weight Ŵa satisfying

Ŵ�a = ûs(ẑ(k + 1)
)
h�a

(
hah�a

)†
(38)

constructs a feasible control policy in the interval [k, k+N−1].
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Proof: Refer to Appendix A-B.
Remark 5: Note that û(ẑ) = ûs

(ẑ) can be directly used
whenever a learning failure occurs. For the sake of control
performance improvement, one can use Ŵa (38) as a feasible
initialization for improving the control policy.

Remark 6: We highlight that recent work in [43] proposed a
Lyapunov-based model-free RL approach to control dynamical
systems with safety constraints. However, the reliability of the
safety guarantee was closely related to the data samples used
in the training process. In our approach, the constraint satis-
faction can be fulfilled by resorting to the receding horizon
principle.

Theorem 3 (Closed-Loop Robustness): Under Assumptions
(A1)–(A4), let at time k

û(k) =
{

û
(
ẑ(k|k)) if V̄(k|k) ≤ V̄(k|k − 1)

û
(
ẑ(k|k − 1)

)
otherwise

(39)

then the closed-loop asymptotic convergence of û, ẑ, and x̂ to
the origin and of u, z, and x to the robust tubes are verified, i.e.,
û(k), ẑ(k), x̂(k)→ 0, and u(k)→ KOz, z(k)→ Oz, x(k)→
Ox as k→+∞.

Proof: Refer to Appendix A-C.
In the following, we prove the asymptotic stability under

w = 0. To proceed, in view of [34], �−1 is Lipschitz
continuous under Assumption (A3). Then, one can derive

‖w̄(z, u, 0)‖ ≤ Lz‖z‖ + Lu‖u‖ (40)

for all z = �(x) satisfying x ∈ X and u ∈ U , where Lz and Lu

are Lipschitz constants. From (40), one has ‖w̄‖ ≤ Lz‖z‖ +
Lu‖z‖K�K in view of (15) and of û, ẑ→ 0 asymptotically.

Theorem 4 (Asymptotic Stability): If w = 0 and there exists
a scalar γ > 0 such that

[
F�PF − P+ γ L̄ F�P

PF −γ I

]

≺ 0 (41)

where L̄ = (LzI+LuK�K), the closed-loop system (6) and (1)
with (7) converge to the origin asymptotically, i.e., x(k) →
0, u(k)→ 0, and z(k)→ 0 asymptotically.

Proof: Refer to Appendix A-D.
Remark 7: The interior-point numerical optimization

method takes O(N(n̄ + m)3) operations for systems with
block-diagonal structure and O(N3(n̄ + m)3) operations if
the block-diagonal structure is not exploited (see [44]).
However, the online computational complexity of our method
is roughly O(N(n̄ + m)(n̄ + Nc)) given Nc ≥ Na. Also,
considering an offline training and an online deploying case,
the computational load is only due to (14) and (30).

V. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Results on Van Der Pol Oscillator

Consider a continuous-time Van der Pol oscillator [37]. Its
model is given as

[
ẋ1
ẋ2

]

=
[

x1

−2x2 + 10x2
1x2 + 0.8x1 + u

]

+ w (42)

where x1 and x2 are the states, and u is the control, the
disturbance w = 0.4sin(10π t). Let x = (x1, x2), then the

Fig. 3. Van der Pol oscillator: Variations of the value function V̄(0|0) in the
first prediction interval.

Fig. 4. Van der Pol oscillator: Desired terminal costate λd,f and the

approximated one λ̂f , where λ[i]
d,f (λ̂[i]

f ) is the ith entry of λd,f (λ̂f ).

following constraints are restricted, i.e., −(2.5, 2.5) ≤ x ≤
(2.5, 2.5), −10 ≤ u ≤ 10.

To implement the proposed r-LPC algorithm, model (42)
was discretized with a sampling period T = 0.01 s to obtain
the discrete-time counterpart, i.e., (1). Then, to derive the
Koopman model, we selected a type of �(x) as �(x) =
(x, ψ1(x), ψ2(x)) − (0, ψ1(0), ψ2(0)) where ψi(x) = ‖x −
ci‖2 log(‖x − ci‖), i = 1, 2, n̄ = 4, c1 = (0.381,−0.341),
c2 = (0.267,−0.889) are the kernel centers randomly gener-
ated according to a uniform distribution. The model parameters
and sets V and D are computed according to the steps
described in Appendix A-E. The resulting constraint on the
nominal state x̂ was −[2.38 2.05] ≤ x̂ ≤ [2.38 2.05].

In the proposed r-LPC, the penalty matrices Q = I2 and
R = 0.1. The penalty scalars related to barrier functions were
μ = μ̄ = 0.001. The prediction horizon was N = 10. The
functions ha and hc were chosen as ha = hc = (σ (ẑ), ντ, ντ 2),
where σ(ẑ) = 1/(1 + exp(−W1ẑ + b1)), ν = 0.001, where
W1 ∈ R

8×4, b1 ∈ R
8, are weighting matrices.

The proposed r-LPC was first implemented with an ini-
tial condition x(0) = (1.5,−1.5). The weighting matrices Ŵa

and Ŵc were initialized as uniformly distributed (UD) ran-
dom values. The simulations with r-LPC were performed in
MATLAB 2019a environment running with Windows 10 oper-
ating system. In each prediction interval, multiple episodes
were used to learn Ŵa and Ŵc. The iterative variations of value
function V̄ in a prediction interval are displayed in Fig. 3,
which shows V̄ reduces gradually and converges to the neigh-
bor of a constant value after about 70 iterative steps. In the
following presented simulation results, the iteration in each
prediction interval was terminated if the terminal region was
reached and the episode was greater than 20. Also, as shown
in Fig. 4, the approximated and desired terminal costates
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TABLE I
VAN DER POL OSCILLATOR: COMPARISONS IN TERMS OF CUMULATIVE COST J

Fig. 5. Van der Pol oscillator: Comparison of the cumulative cost J of the
three approaches at x(0) = (1.5,−1.5).

converge asymptotically to the origin, and the approximated
terminal costate by the critic network is close to the desired
one.

Comparisons With r-KMPC [34] and an LQR: The compar-
ative studies of r-LPC with r-KMPC [34] and an LQR using
a local linearized model were also considered. For a fair com-
parison, parameters Q and R in the r-KMPC and LQR were
selected the same as r-LPC. The variations of cumulative cost
J = ∑Nsim

j=1 ‖x(j)‖2Q + ‖u(j)‖2R, Nsim = 400, of all the three
controllers are presented in Fig. 5. The results show that the
control performance of r-LPC is slightly better than r-KMPC
and LQR in terms of regulation cost under x(0) = (1.5,−1.5).
To further verify the effectiveness of r-LPC, we also conducted
simulation tests with multiple different initial conditions. The
resulting cumulative costs obtained with r-LPC (using online
as well as offline learned policy), r-KMPC, and LQR are listed
in Table I. The results reveal that r-LPC can perform slightly
better in the case that initial conditions were far from the ori-
gin. Also, compared with LQR, r-LPC and r-KMPC can deal
with constrained control problems. As a piece of evidence to
the constraint satisfaction of r-LPC, the result of a safety test
is presented in Fig. 6, which shows that r-LPC can recover a
feasible control policy from constraint violation in the adopted
prediction interval.

B. Simulation and Experimental Results on an Inverted
Pendulum

Consider also the problem of regulating an Inverted
Pendulum. The continuous-time nonlinear system model is

⎡

⎢
⎢
⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

x2
3
2l (gsinx1 + ucosx1)

x4
u

⎤

⎥
⎥
⎦+ w (43)

where x1, x2, x3, and x4 are the angle displacement and veloc-
ity of the rod, position and velocity of the car, l = 0.5 m,

Fig. 6. Van der Pol oscillator: Feasible control recovery when a constraint
violation occurs. The logical value being 1 means a constraint violation is
detected when the proposed feasible control policy is applied to guarantee
recursive feasibility of r-LPC.

Fig. 7. Experimental platform of an inverted pendulum.

g = 9.8 m/s2, ‖w‖∞ ≤ 0.5. Denoting x = (x1, x2, x3, x4),
the state and control are limited as −(0.25 rad, 2 rad/s, 1 m,
2 m/s)≤ x ≤ (0.25 rad, 2 rad/s, 1 m, 2 m/s), |u| ≤ 20 m/s2.
For a visual display of the inverted pendulum platform, see
Fig. 7.

To derive the Koopman model, input–output datasets pairs
of (43) with M = 2·104 were collected using a random control
policy with a uniform distribution. Gaussian kernel functions
were selected to construct �, i.e.,

�(x) = (x, ψ1(x), ψ2(x), ψ3(x))− (0, ψ1(0), ψ2(0), ψ3(0))

where ψi(x) = e−‖x−ci‖2 , i = 1, 2, 3, n̄ = 7, and kernel centers
c1 = (0.59,−0.73, 0.14, 0.04), c2 = (0.67, 0.26, 0.2, 0.72),
and c3 = (0.3, 0.99, 0.58,−0.37) are generated randomly. The
parameters of the linear predictor were computed similar to
the previous section (see [34]). The penalty matrices Q and R
were selected as Q = I2 and R = 0.02. μ = μ̄ = 0.001. The
functions ha and hc were chosen as ha = hc = (σ (ẑ), ντ, ντ 2),
σ(ẑ) = 1/(1 + exp(−W2ẑ + b2)), W2 ∈ R

12×7, b2 ∈ R
12,

where ν = 0.001. The variations of the terminal costate and its
approximated value are displayed in Fig. 8, which shows that
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Fig. 8. Inverted pendulum: Desired terminal costate λd,f and the approxi-

mated one λ̂f , where λ[i]
d,f (λ̂[i]

f ) is the ith entry of λd,f (λ̂f ).

TABLE II
COMPARISONS WITH R-KMPC IN TERMS OF CUMULATIVE COST J

Fig. 9. Inverted pendulum: Control performance comparison between r-LPC
and RDA-DG in the experimental tests under no exogenous disturbance.

the approximated and real terminal costates converge rapidly
to the origin, and the approximated terminal costate is close
to the desired one.

Comparison With r-KMPC in the Simulation Tests: The
r-LPC and r-KMPC were implemented with an initial con-
dition x(0) = (0.1, 0.1, 0.2, 0.2) and a disturbance w =
0.5sin(10π t). The r-LPC was run ten times to improve the
control performance. The final cumulative costs of r-LPC and
r-KMPC, i.e., J = ∑Nsim

j=1 ‖x(j)‖2Q + ‖u(j)‖2R, Nsim = 600, are
collected and displayed in Table II, which show that the costs
obtained with offline learned policies are comparable to that
of r-KMPC with different prediction horizons.

Fig. 10. Inverted pendulum: Control performance comparison between r-
LPC and LQR in the experimental tests under an additive sinusoidal noise,
i.e., w = 0.1sin(20π t).

Fig. 11. Inverted pendulum: Comparison in terms of cumulative cost of the
r-LPC, RDA-PG, and LQR in the experimental tests under UD noises.

Comparison With an RDA-PG [35] and an LQR in the
Experimental Tests: In peculiar, a recently developed regular-
ized policy gradient method, i.e., RDA-PG in [35] and LQR
were used for comparisons in the experimental tests. The con-
trol policies used in the experimental studies of r-LPC and
RDA-PG were learned offline. All the experimental tests were
performed with the sampling interval T = 0.01 s. The tests
were validated in three model conditions, i.e., the inverted pen-
dulum was run under a nominal condition, a sinusoidal (S)
noise w = 0.1sin(20π t), and a UD noise with an amplitude
of 0.003 and a frequency of 10 Hz, respectively. The compar-
ative results of r-LPC and RDA-PG in the nominal case are
initially displayed in Fig. 9, which shows that our approach
performs better than RDA-PG. The comparative results of r-
LPC and LQR in Fig. 10 under the sinusoidal noise illustrate
the strong point of our approach to LQR. Moreover, the com-
parative results of the three controllers under the UD noise
in terms of the cumulative costs Jx = ∑Nsim

k=1 ‖x(k)‖2 and
Ju = ∑Nsim

k=1 ‖u(k)‖2 are displayed in Fig. 11, which shows
that our approach results in the lowest value of Jx and Ju for
the regulation of state and control, respectively. For compre-
hensive comparison, the mean cumulative costs, J̄x = Jx/Nsim
and J̄u = Ju/Nsim, in the prescribed three model scenarios are
collected and displayed in Table III, which shows the effec-
tiveness of r-LPC in control of systems under disturbances
when compared with RDA-PG and LQR.
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TABLE III
INVERTED PENDULUM: COMPARISONS OF MEAN CUMULATIVE

COSTS IN EXPERIMENTAL TESTS

VI. CONCLUSION

This article proposes a robust LPC scheme, i.e., r-LPC,
for nonlinear discrete-time dynamical systems with unknown
dynamics, state constraints, and uncertainties. In r-LPC,
instead of numerically computing a control sequence by a
nominal MPC, an actor–critic learning algorithm is proposed
to learn an explicit time-dependent control policy in a
receding-horizon manner. The resulting output of r-LPC is
composed of an RL-based control policy and an offline
nonlinear state-feedback policy. As the prominent feature,
r-LPC can guarantee feasibility in each prediction interval
if state constraint violations occur by actor–critic learning,
which allows applying our approach to control safety-critical
systems. The closed-loop robustness with r-LPC under approx-
imation errors is proven, and asymptotic stability under no
exogenous disturbance is obtained.

The proposed r-LPC algorithm has advantages over previous
robust MPC and model-based optimal control methods. For
instance, compared with tube MPC (see [7], [34]), r-LPC
results in an explicit control policy, allowing for control
implementation with limited computational resources; while
compared to LQR, the advantage lies in the resultant nonlinear
control policy, the constraint fulfilment, and the online learn-
ing ability due to the actor–critic learning. Future works will
focus on the extension of r-LPC to continuous-time nonlinear
systems.

APPENDIX

A. Proof of Theorem 1

1) Consider the Lyapunov function

L(τ ) = La(τ )+ Lc(τ )

where L� = (1/2)tr(W̃�� W̃�), W̃� = W�−Ŵ�, � = a, c in turns.
In view of (28) and (32), the difference of L writes

�L(τ + 1) = �La(τ )+�Lc(τ ) (44)

where

�L�(τ ) = tr
(
γ�∇δ�(τ )�W̃�(τ )

)

︸ ︷︷ ︸
∇L�,1(τ )

+ 0.5tr
(
γ�

2∇δ�(τ )�∇δ�(τ )
)

︸ ︷︷ ︸
∇L�,2(τ )

.

(45)

∇δ� = ∂δ�/∂Ŵ�, � = a, c in turns. To compute �Lc, in view
of (27), one writes

∇δc(τ ) =
∂tr

(
‖εc(τ )‖2 +

∥
∥εc,N

∥
∥2

)

∂Ŵc︸ ︷︷ ︸
∇δc,1(τ )

+
∂tr

(
μ̄

(
B

(
λ̂(τ )

)
+ Bf

(
λ̂
)))

∂Ŵc︸ ︷︷ ︸
∇δc,2(τ )

. (46)

For the sake of simplicity, in the rest of the Appendix, we
use q to denote a generic variable q with time index τ , i.e.,
q(τ ), q+ to represent q(τ + 1), qN = q(k+N). In view of the
definition of λd and λ∗, it holds that

εc = λd − λ∗ + λ∗ − λ̂
= ξc +�ε̄c (47)

where ξc = −A�W̃�c h+c + W̃�c hc, �ε̄c = ε̄c−A�ε̄+c . The term
∇δc,1 in (46) can be computed as

∇δc,1 = −2
(

hc(ξc +�ε̄c)
� − h+c (ξc +�ε̄c)

�A�

+ hcN(ξcN + ε̄cN)
�)

(48)

where ξcN = W̃�c hcN , hcN = hc(k + N).
Consider the constraint on λ̂ of type �i = {λ̂|λ̂�Ziλ̂ ≤ 1}.

Then, one can compute the term ∇δc,2 in (46) as

∇δc,2 = 2μ̄
(
κ−1
λ hch�c ŴcZi + κ−1

λN hcNh�cNŴcZN

)
:= 2μ̄ω

(49)

where κλ = 1− λ̂�Ziλ̂, κλN = 1− λ̂�ZN λ̂.
In view of (48) and (49), one can write the first term

in (45) as

∇Lc,1 = −2γctr
(
ξc(ξc +�ε̄c)

� + ξcN(ξcN + ε̄cN)
� − μ̄W̃�c ω

)

= −tr
(∥
∥ξ̄c

∥
∥2

M + ξ̄�c Mρ1 − 2γcμ̄W̃�c ω
)

(50)

where ξ̄c = (ξc, ξcN), ρ1 = (�ε̄c, ε̄cN), and M = 2γcI2. Also,
one can compute

∇Lc,2 = tr
(
−∥

∥ξ̄c
∥
∥2

G1
+ ξ̄�c (G2ρ1 + G3ρ2)+ ḡε̄c

)
(51)

where ρ2 = (Ŵ�c hc, Ŵ�c hcN), ḡε̄c = 2γ 2
c (ϕ
�
c ϕc + 2μ̄ϕ�c ω +

μ̄2ω�ω)), and ϕc = −hc�ε̄
�
c + h+c �ε̄�c A� − hcN ε̄

�
cN

G1 = −
[

g1 g�12
g12 g2

]

g1 = 2γ 2
c (h̄c + h̄+c A�A − 2A�h�c h+c ), g2 = 2γ 2

c h̄cN , g12 =
2γ 2

c (h
�
c hcN − A(h+c )�hcN), q̄ = q�q for q = hc, hcN, h+c

G2 =
[

g3 g4
g5 g6

]

and where g3 = 4γ 2
c (h̄c − h�c h+c A − (h+c )�hcA� + h̄+c AA�)

g4 = 4γ 2
c (−(h+c )�hcNA+h�c hcN), g5 = 4γ 2

c (h
�
cNhc−h�cNh+c A),

g6 = 4γ 2
c h�c hcN

G3 =
[

g7 g8
g9 g10

]
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and where g7 = 4μ̄γ 2
c κ
−1
λ (−h̄c + (h+c )�hcA)Zi,

g8 = 4μ̄γ 2
c κ
−1
λN (−h�c hcN + (h+c )�hcN)A)ZN ,

g9 = −4μ̄γ 2
c κ
−1
λ h�cNhcZi, and g10 = −4μ̄γ 2

c κ
−1
λN h̄cNZN .

Taking (50) and (51) into consideration, �Lc results

�Lc = tr
(
−∥

∥ξ̄c
∥
∥2

Gc1
+ ξ̄�c (Gc2ρ1 + Gc3ρ2)+ gε̄c

)
(52)

where Gc1 = G1 +M, Gc2 = G2 −M, Gc3 = G3, and gε̄c =
ḡε̄c + 2γcμ̄W̃�c ω.

Applying Young’s inequality and the Cauthy–Schwartz
inequality, it holds that

tr
(
ξ̄�c (Gc2ρ1 + Gc3ρ2)

)
≤ αc

2

(
‖Gc2‖2 + ‖Gc3‖2

)
‖ξ̄c‖2

+ 1

2αc

(
‖ρ1‖2 + ‖ρ2‖2

)

where αc > 0. As Ŵc is bounded provided δc is finite,
we assume ‖Ŵc‖ ≤ Wc,m, then ‖W̃c‖ ≤ 2Wc,m in view
of Assumption (A4). One can promptly have ‖ω‖ ≤ ω̄,
‖ϕc‖ ≤ ϕ̄c, and ‖gε̄c‖ ≤ gc,m, where the derivation of ω̄, ϕ̄c,
and gc,m is trivial and neglected for simplicity. Hence, (52)
leads to

�Lc(τ ) ≤ −
∥
∥ξ̄c(τ )

∥
∥2

Ḡc1
+ resc (53)

where Ḡc1 = Gc1 + [αc/2](‖Gc2‖2 + ‖Gc3‖2), resc = gc,m +
[1/2αc](2ε̄2

c,m + 2W2
c,mh2

c,m).
As a second step, we compute the �La in (44). Note that

in view of (31), one has

∇δa = ∂tr
(‖εa‖2 + μ̄B(û)

)

∂Ŵa
.

Consider the input constraint of type Û = {û|∑p
i=1 a�u,iû ≤

1,∀i ∈ R
p
1}. One can write [(∂B(û))/(∂ û)] = ∑p

i=1 a�u,iκ
−1
û,i ,

where κû,i = 1− a�u,iû. Hence

∂tr
(‖εa‖2

)

∂Ŵa
= −2ha

(
ϕa + R̄2W̃�a ha

)�
R̄1 (54)

where ϕa = (ãu,i+I)ε̄a+B�W̃�c h+c +B�ε̄+c , R̄1 = 2R+κ−2
û,i ãu,i,

R̄2 = 2R+∑p
i=1 ãu,iκ

−1
u,i κ

−1
û,i , κu,i = 1− a�u,iûd, ãu,i = au,ia�u,i.

Recalling the fact that [(∂a�X�b)/∂X] = ba� where X is a
matrix, a and b are two vectors, one has

∂tr
(B(

û(τ )
))

∂Ŵa(τ )
= halu (55)

where lu = ∑p
i=1 a�u,iκ̂

−1
u,i . Hence, denoting ξa = W̃�a ha, in

view of (54) and (55), it follows that:

�La = tr
(
−‖ξa‖2Ga1

+ Ga2ξa + gε̄a

)

where Ga1 = (2γaI − 2γ 2
a h̄aR̄2R̄1)R̄1R̄2, Ga2 =

(4γ 2
a R̄2R̄1R̄1ϕah̄a − 2γaR̄1ϕa + μ̄γalu� + 2γ 2

a μ̄R̄2R̄1lu�h̄a)
�,

h̄a = h�a ha, gε̄a = 2γ 2
a R̄1ϕah̄aϕ

�
a R̄1 − 2γ 2

a μ̄lu�h̄aφaR̄1 +
1/2γ 2

a μ̄
2lu�h̄alu.

Likewise, in view of Assumption (A4), one can promptly
have ‖ϕa‖ ≤ φ̄a, ‖lu‖ ≤ l̄u, ‖gε̄a‖ ≤ ga,m, and ‖Ga2‖ ≤ Gam,
where the derivation of φ̄a, l̄u, ga,m, and Gam is trivial and is

neglected for simplicity. Applying Young’s inequality and the
Cauthy–Schwartz inequality leads to

�La ≤ −‖ξa‖2Ḡa1
+ resa (56)

where Ḡa1 = Ga1 − (αaγa/2), αa > 0 is a tuning parameter,
resa = 2

αaγa
G2

am + ga,m. With (53) and (56), one can write

�L ≤ −∥
∥ξ̄c

∥
∥2

Ḡc1
− ‖ξa‖2Ḡa1

+ res (57)

where res = resa + resc, leading to the variables ξ̄c(τ ) and
ξa(τ ) converging to the corresponding sets as τ → N and
N →+∞, i.e.,

∥
∥ξ̄c(τ )

∥
∥ ≤ res

σmin
(
Ḡc1

) , ‖ξa(τ )‖ ≤ res

σmin
(
Ḡa1

) . (58)

In view of the definition of ξ̄c [cf. (47)] and ξa, one has

ξ̄c = εl
c − ε̃c, ξa = εa − ε̄a

where εl
c = (εc, εcN) and ε̃c = (�ε̄c, ε̄cN). Hence, (58) results

∥
∥
∥εl

c(τ )

∥
∥
∥ ≤ res

σmin
(
Ḡc1

) + πAεc,m := ηc (59a)

‖εa(τ )‖ ≤ res

σmin
(
Ḡa1

) + ε̄a,m := ηa (59b)

where the inequality in (59a) comes from that ‖ε̃c‖ =√
�ε̄�c �ε̄c + ε̄�cN ε̄cN ≤ πAεc,m and πA =

√
2+ 2‖A‖ + ‖A2‖.

2) Provided that ε̄c = 0, ε̄cN = 0, and μ̄ = 0, one
has �Lc(τ ) ≤ −‖ξ̄c(τ )‖2Ḡc1

which implies that ξ̄c(τ ) → 0

exponentially. That is to say, λ̂(τ ) converges to λd(τ ) at an
exponential rate. In view of this, one can rewrite (26) as

λi+1
d

(
ẑ(τ )

) = μ∂B
(
ẑ(τ )

)

∂ ẑ(τ )
+ 2Q̄ẑ(τ )+ A�λi

d

(
ẑ(τ + 1)

)
(60)

where the superscript i is the iterative step corresponding to
Ŵc(τ + i), i.e., λi

d(ẑ(τ )) = Ŵc(τ + i)�hc(τ ). In view of (22)
and denoting λ̃ as the subtraction of λ∗ and λd, one promptly
has λ̃i+1(τ ) = A�λ̃i(τ + 1). By induction, one has

λ̃i(τ ) = (A�)iλ̃0(τ + i)→ 0

as i→+∞, due to the fact ‖A�‖ → 0 for i→+∞ in view
of A being Schur stable. This also implies λ̂(τ )→ λ∗(τ ) for
τ ∈ [k, k + N − 1] as N → +∞. With this result, the term
Ŵ�c h+c in (54) is a vanishing term, then one has

�La ≤ −‖ξa‖2Ḡa1

leading to the result that ξa converges to ξ∗a . Hence, Ŵc(τ )→
Wc and Ŵa(τ )→ Wa as τ → N and N →+∞.

B. Proof of Theorem 2

Assume that at any time instant k, a feasible control
sequence can be generated with (30) at time k. We denote the
near-optimal control policy as û(ẑ(k|k)), . . . , û(ẑ(k+N−1|k))
associated with a near-optimal cost given as V̄(k) such that
x(k+ i|k) ∈ X , u(k+ i|k) ∈ U ∀i ∈ [0,N−1], ẑ(k+N|k) ∈ Zf .
At the next time instant k + 1, (36) is a feasible choice
such that x(k + i|k + 1) ∈ X , u(k + i|k + 1) ∈ U ∀i ∈
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[1,N], ẑ(k + N + 1|k + 1) ∈ Zf . This is due to the stan-
dard recursive feasibility argument of MPC (see [6]). Hence,
with (36), the recursive feasibility of the finite-horizon RL
follows. Moreover, provided the feasible policy ûs

(ẑ(k + 1))
[see (36)] at time k + 1, the corresponding weight satisfies
Ŵ�a ha = ûs

(ẑ(k + 1)) leading to (38) in view of (37).

C. Proof of Theorem 3

At time instant k+ 1, the learned cost V̄(k+ 1|k+ 1) might
not be smaller than V̄(k+ 1|k). In this case and the case that
feasibility is not guaranteed, the control policy (39) can be
applied. Hence, denoting V̄s(k+1) = min{V̄(k+1|k+1), V̄(k+
1|k)}, one has

V̄s(k + 1)− V̄s(k)

≤ −
(∥
∥ẑ(k)

∥
∥2

Q̄ +
∥
∥û(k)

∥
∥2

R + μB
(
ẑ(k)

)+ μB(
û(k)

))

− μBf
(
ẑ(k + N)

)+ μBf
(
ẑ(k + N + 1)

)

+ ∥
∥ẑ(k + N)

∥
∥2

F�PF−P+Q̄+K�RK+μH . (61)

Recalling that

Bf
(
ẑ(k + N + 1)

)− Bf
(
ẑ(k + N)

)

= 1

1− ẑ(k + N)�F�ZFẑ(k + N)
− 1

1− ẑ(k + N)�Zẑ(k + N)
< 0 (62)

in view of (17), from (61), the monotonic property of the value
function is obtained, i.e., V̄(k + 1) − V̄(k) ≤ −(‖ẑ(k)‖2

Q̄
+

‖û(k)‖2R + μB(ẑ(k))+ μB(û(k))), which leads to V̄(k + 1)−
V̄(k)→ 0 as, k→∞. Hence, ẑ(k), û(k)→ 0 asymptotically.
Consequently, x̂(k) → 0 asympotically since x̂ = Cẑ. Recall
that the real state remains inside the tube, i.e., ẑ ⊕ Z ∈ X ,
then the robustness is obtained, i.e., z(k)→ Oz, consequently,
x(k)→ Ox asymptotically.

D. Proof of Theorem 4

We present a different proof to [34]. Recalling that û, ẑ,
x̂→ 0 (cf. Theorem 3) and w = 0, one can write (6) as

{
z(k + 1) = Fz(k)+ w̄(k), ‖w̄(k)‖ ≤ ‖z(k)‖L̄
x(k) = Cz(k)+ v(k).

(63)

Consider the Lyapunov function V(k) = z(k)�Pz(k). To guar-
antee asymptotic stability, its difference �V(k) = z(k +
1)�Pz(k + 1) − z(k)�Pz(k) = z(k)�(F�PF − P)z(k) +
2z(k)�F�Pw(k)+w(k)�w(k) < 0, leading to the linear matrix
inequality (41) by applying the S-procedure in [45] with
the condition ‖w̄(k)‖ ≤ ‖z(k)‖L̄. Indeed, with (41), one has
that z(k) → 0 asymptotically. Consequently, it follows that
u(k)→ 0 asymptotically. In view of �(0) = 0 one has v = 0
as x = 0. Hence, x = Cz+ v→ 0 asymptotically.

E. Derivation of A, B, C, and D and Sets D and V
Inline with [34] and [37], the matrices A, B, C, and D can

be computed using input and output datasets. Let us assume
to have L datasets of (wi, ui, xi, x+i ), where x+i is the suc-
cessor state of xi by applying (wi, ui) to (1), and wi can be

computed using nonlinear estimation methods if it is not mea-
surable (see [37]). It is assumed that {(ui, xi)}Li=1 are drawn
independently according to a nonnegative probability distribu-
tion. Then, A, B, C, and D can be obtained via minimizing a
type of cost function defined as

Loss =
L∑

i=1

∥
∥A�(xi)+ Bui + Dwi −�

(
x+i

)∥
∥2

+ ‖C�(xi)− xi‖2 + α‖[A B D]‖2 + β‖C‖2 (64)

where α and β are positive scalars. With (64) being solved,
sets D and V can be estimated according to the empirical risk
evaluation in [10]. For computational details on the derivation
of D and V , refer to [34].
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